Data Association in Multi Target Tracking Using Cross Entropy Based Algorithms
نویسندگان
چکیده
Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult computational challenges related to the measurement-to-track data association problem. Different approaches have been proposed to tackle this problem, including various approximations and heuristic optimization tools. The Cross Entropy (CE) and the related Parametric MinxEnt (PME) methods are recent optimization heuristics that have proved useful in many combinatorial optimization problems. They are akin to evolutionary algorithms in that a population of solutions is evolved, however generation of new solutions is based on statistical methods of sampling and parameter estimation. In this work we apply the Cross-Entropy method and its recent MinxEnt variant to the multi-scan version of the data association problem in the presence of misdetections, false alarms, and unknown number of targets. We formulate the algorithms, explore via simulation their efficiency and performance compared to other recently proposed techniques, and show that they obtain state-of-the-art performance in hard scenarios.
منابع مشابه
IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Data Association in Multi Target Tracking Using Cross Entropy Based Algorithms
Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult computational challenges related to the measurement-to-track data association problem. Different approaches have been proposed to tackle this problem, including various approximations and heuristic optimization tools. The Cross Entropy (CE) and the related Parametric MinxEnt (PME) methods are recent optimiza...
متن کاملCross Entropy Data Association for Multiple Target Tracking
Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult computational challenges related to the measurement-to-track data association problem. Different solution approaches have been proposed to tackle this problems, including various approximations and heuristic optimization tools. The Cross Entropy method is a recent optimization heuristic that has proved usefu...
متن کاملCross-entropy based data association for multi target tracking
Multiple-target tracking (MTT) in the presence of spurious measurements poses difficult computational challenges related to the measurement-to-track data association problem. Different approaches have been proposed to tackle this problem, including various approximations and heuristic optimization tools. The Cross Entropy (CE) and the related Parametric MinxEnt (PME) methods are recent optimiza...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008